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INTRODUCTION

Although the von Neumann—Morgenstern expected utility theory f 5 1 [14] [25 1

pertains to any risky situation in which consequences’ probabilities have been

assessed, it has received special attention in monetary settings. As long ago

as 1728 , Gabriel Cramer suggested [4, p. 34] that a gain in present wealth

might have utility proportional to the square root of the gain. A few years

later, and without prior knowledge of Cram er ’s contribution, Daniel Bernoulli

3 1 [ 4 1 argued that——in the absence of unusual circumstances——the utility of

wealth w will be equal to b log (w/a), where a and b are positive constants.

After the von Neumann—Morgenstern revival and axiomatization of expected

utility, Friedman and Savage [7 1 proposed a utility of income function for

low—income consumer units that has a convex (risk—preferring or risk—seeking)

segment surrounded by two concave (risk—averse) segments to explain, among

other things, gambling and insurance—buying behavior. Markowitz [20] then

modified this by suggesting a four—segment bounded utility function of wealth

that is initially convex, then concave, then turns convex again in the vicinity

of present wealth, and ends up concave. Additional co~~ents on the Friedman—

Savage and Markowitz proposals are made in [1] [11] [18] [22] [26].

In contrast to these armchair proposals, a number of research workers——

including Grayson and Swalm [9] [241——have attempted to assess individuals’

utility functions over significant changes in individual or corporate wealth,

or in return on investment [10]. This work adopts the proposition [16] that

changes in wealth rather than final asset positions govern utility or value

judgmecsts and its concomitant choice behavior. The data it has generated are

reviewed by Fishburn, Libby and Fishburn, and Kahneman and Tversky [ 6 ] [19]

(16], and suggest four interesting things. First, there is usually a point t

—4
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on the abscissa at which something unusual happens to the individual ’s utility

function. This target point [ 6 1 [191 or reference point [161 is often the

zero—gain point, as in Markowitz ’s case [20] or in Swalm ’s data [24], but may

be in the loss region (some wildcatters [9]) or the gain region [10]. Second ,

below—target utility is frequently convex [ 2 ] [ 8 ] [12] [16] [23] [24].

Third , a majority of above—target utility functions are concave, or risk—averse.

And fourth, below—target utility , whether convex, concave or linear, is

almost always steeper than above—target utility. Figure 1 gives a composite

Figure 1 about here

picture of these things. An alternative below—target concave segment is shown

by the dashed curve (cf. [13], Exhibit IX).

The present paper has two main purposes. The first is to re~xaxnine the

published assessment data to obtain a more precise picture of the generalizations

noted above. The second is to get an idea of the extent to which simple

functional forms yield good fits to the assessment data . In each case we

shall calculate or estimate the best fit for each functional type to the

above—target data and to the below—target data. The parameters of these fits

will then be used to evaluate slope and curvature questions. We shall also

note which functional type provides the best below—target fit and which gives

the best above—target fit. The best—fit criterion used throughout is minimum

least squares.

The next section discusses the functional forms that were fit to the

data . This is followed by remarks on our fitting methodology . The penultimate

section lists the data sources, identifies best fits for each case, and 
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summarizes salient aspects of these fits. The paper concludes with an overview

of main results.

Since the study uses the data available in the published literature on

the assessment of von Neumann—Morgenstern utility functions, our sample cannot

be regarded as random or unbiased . Nevertheless, utility assessments from

many individuals engaged in different pursuits are represented in the data.

Consequently, we feel that these data give a reasonable picture of what might

be expected in other situations.

FUNCTIONAL FORNS

The data for each case examined later will be transformed linearly so

that the transformed target point is x = 0 and the utility at the origin is

zero. Three simple functions will be fit to the data, and this will be done

separately for x > 0 and x < 0. The three functions are the linear (L),

power (P) and exponential (E) functions. These are defined as follows for

x > 0 :

u(x), x > 0 u’(x) u~~(x)

L
+ cx; c > 0 c 0

a a — i  a - 2
p+ a x 2;a > O , a > 0 a a x 2 aa(a — l)x 2

1 1 2 1 2  1 2  2

-bx — b x  -bx
E~ b(1 — e 2 ) ; b b  > 0  b b e  2 — b b 2e 2

1 1 2  1 2  1 2

The corresponding functions for x < 0 are obtained from these by replacing x

by —x and multiplying by ~l:
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u(x), x < 0 u’(x) u’(x)

L cx ; c > 0 c 0

a a — ~~ a — 2

P —a (—x) 2 ; a > 0, a > 0 a a (—x) 2 —a a (a — l)(—x) 2
1 1 2 1 2  1 2  2

b x  b x  b x
E —b ( l — e 2 ) ; b b  > 0  b b e 2 b b 2 e 2

1 1 2  1 2  1 2

These functions were chosen for their analytical simplicity and economy

of parameters, and for their ability to approximate or generate a large

variety of specific forms. Moreover , such functions have been used extensively

to describe phenomena in the physical and social sciences. We invite readers

who feel that other forms may give good fits to the subjective empirical data

to compare these with L, P and E.

Although L is the special case of P with a 1, we decided to isolate it

for three reasons. First , some of the data plots either above or below x = 0

looked nearly linear , in which case L may provide a very good fit; second , the

minimum mean squared error (~~SE) for a minimum least—squares L fit offers a

useful benchmark against which to compare the MMSE values of the P and E fits;

and third , the best L
+ 

and L fits give an indication of the change in slope of

the utility function around x = 0 that is not unduly confounded with curvature.

When a ~ 1, it may be noted that the slope of P~ at 0
+ 

is either zero

(a > 1) or infinity (a < 1), and the slope of P at 0 is either zero (a > 1)
2 2 2

or infinity (a < 1).

It should be noted also that while a two—piece linear utility function——

which we denote as L Lt_ is risk neutral in the negative region and in the

positive region, it is risk neutral for all gambles if and only if it does not

change slope at the origin. If the slope of C is greater than the slope of L+,
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then gambles that have both negative and positive outcomes exhibit risk

aversion, whereas risk—seeking behavior applies for such gambles when the

+slope of L is less than the slope of L

For power functions, P
4 

is risk—averse (u’~ (x) < 0, or u is concave) if

a < 1 and risk—seeking (u~~(x) > 0, or u is convex) if a > 1, and P is
2 2

risk—averse or concave if a > 1 and risk—seeking or convex if a < 1. The
2 2

picture for gambles that have both negative and positive outcomes is more

complex when u is a two—piece power function, of type P P~ . For example,

such gambles may exhibit risk—seeking behavior (certainty equivalent of the

gamble exceeds its actuarially fair value) when both P+ and P are risk—averse.

For exponential functions, which require both parameters to have the same

sign for u to increase, E
4 
is risk—averse if b > 0 and risk—seeking if b < 0,

1 1

whereas E is risk—averse if b < 0 and risk—seeking if b > 0. Although

neither E
+ 
nor E can be risk neutral, they can be arbitrarily close to risk

neutrality or linearity . For example, if b > 0 in E
4 

is set equal to

c/(l — e~~2), then l’Hospital ’s rule shows that E
4 
approaches cx and b b

approaches c as b goes to zero (and b goes to +°~~~. This shows that L is a

limiting case of E. It is therefore possible , for  example, for the MMSE of

an L
+ fit to be smaller than the MSE’s of all E

+ 
fits——and this must happen

when the positive data points lie on a straight line through the origin——but

it is then true also that there is no best fit and that the infimum of the

MSE values of the E
4 

fits equals the MMSE of L
+
.

Because the ~ ISE of a P fit can never exceed the NMSE of an L fit (and

the ~~1SE of an E fit , when it exists, can never exceed the ~~SE of an L fit)

the best fit to the data among the three function types will be a power or

exponential fit. We shall therefore focus part of our attention later on the
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question of whether power functions or exponential functions tend to yield

the best fits over a number of situations . Although the later comparisons

between P and E are purely a matter of fits to subjective empirical data ,

differences between the functions may help to place the results in perspective .

For example, in the risk—averse P
4 

and E
4 

cases, the E
4 

function is bounded

above by b while the P~ function increases without bound , and Pratt ’s [21]

local measure of absolute risk aversion r(x) = —u~~(x)/u (x) is positive and

constant for E+ but positive and decreasing for P4. For the risk—seeking

cases in the positive region with a > 1 or b < 0, r(x) is negative and

constant for E
4 
and negative and increasing for P~ , and although both functions

grow rapidly the ratio of E
4 

to P+ approaches infinity as x gets large. The

pictures for x < 0 are essentially reversed . Thus, risk—seeking for E and

P arises with a < 1 and b > 0, with C in this case bounded below by —b
Finally, it should be noted that P~ and E

4 
have a limiting form that is

discontinuous at the origin with u(0) = 0 and u(x) = k > 0 for all x > 0.

This arises from P~ whets a = k and a goes to zero , and from E
+ when b = k

and b goes to infinity . This form, reflected into the negative quadrant ,
2

was used in one below—target case that is identified later as SA4 in Table 1A.

This case consists of two below—target data points for which the one farther

away from the target has the algebraically larger utility. Because of this

there is no best P or E fit as such, but with k midway between the two

utilities of the data points we can get the MSEs of P and E arbitrarily

close to the MSE of the horizontal utility function whose value is k for all

x < 0. 
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FITTING THE FUNCTIONS

As suggested earlier , the original data were transformed linearly so that

the transformed target point and its utility were both zero. Because separate

fits were made for the above—target data and the below—target data, we shall

describe the transformations used for each, including the reverse transformation

that describes the fit utility function in terms of the original data scales.

In doing this we shall let (t, u )  denote the target point and its utility in

the original data format, and let (x,y) be the transformed data point that

corresponds to the original data point (x ,y). As before , u(x) is the

function fit to the transformed data , and U(x ) will be the utility function

in the original data format that corresponds to u(x).

The general linear transformations used for the x > t data were

x = k (x — t), y = k (y — u ) with k ,k > 0.
1 0 2 0 0 1 2

Since y = u + y/k  and y is the transformed u t i l i ty  data value that is
0 0 2

compared to the fit value u(x), we get

U(x ) = u + u(k (x — t))/k for x > t
0 0 1 0 2

with derivative U(x ) = (k /k )u’ (x). The slopes of U at the target point

f or L+ and E4 are therefore U~(t) = (k /k )c and U~ (t) = (k /k )b b

respectively.

The general linear transformations used for the x < t data were

x k (t - x ), ‘
~
‘ = k (u — y ) with k , k > 0.

3 0 + 0 0 3 I.
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These transformations put the (x,y) pairs into the positive quadrant so that

MMSE algorithms used in fitting functions to the above—target data could be

used in precisely the same way to f i t  functions to the below—target data.  In

other words , the L
4
, P~ and E

4 
forms at the outset of the preceding section

were used for the (x,y) transformed data in the below—target cases. Given

u(x) as fit in this manner , it follows from y = u — y /k  that

0 0

U (x ) = u — u (k (t — x ) ) / k  f or x < t
0 0 3 3

with derivative U~ (x ) = (k 1k ) u’ (x). Note here that if u = 0 , t = 0 and
0 3 L 0

k = k = 1, then U(x ) = — u ( — x  ) ,  which corresponds to our description of
3 1 0 0

how t he x < 0 funct ions were obtained from the x > 0 functions in the latter

part of the first paragraph in the preced ing section. In a below—target

case the slopes of U at the target point for L and E are U (t) = (k 1k )c
3 L4

and U (t) = (k /k )b  b respectively.

If we let c+
be the ~NSE value of c fo r the L+ f i t  to the x > t data ,

let c be the NNSE value of c for the L
4 

fit to the transformed x < t data ,

and let b+, b
+
, b and b have similar meanings for the exponential fits ,

then the ratio of U~ (t) for x < t to U (t) for x > t will be

R ( t )  = (k k /k k ) ( c / c+) for  the two—piece linear f i t ,
2 3  1 L .

R(t) = (k k 1k k )(b b /b
+
b
+
) for the two—piece exponential fit.

2 3  j & 4  1 2  1 2

We can of course use different functional forms below and above the target so

that , for example, R(t) = (k k /kk)(c
_
/b
+
b
+
) for the L E ~ case. In any

event , values of R(t) > 1 suggest that utility rises more rapidly below the

target than above the target, and values of R(t) < 1 suggest the converse. 

..~~~~ ._ _ _ _ _ _ _ _  _
~~-~~ —- - -- -
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Each below—target and above—target data set was transformed linearly as

described above so that (10,10) was the most extreme data point. (In all

cases except for the nonmonotonic below—target case SA4, it was fairly clear

which point was the extreme point , with (x,y) < (10,10) for all data points

(x,y). The ensuing discussion does not pertain to the exceptional case.) It

follows that every fit function began at (0,0) and went “towards” (10,10) but

passed through the latter point only if the fit was exact at that point.

The restriction of u(O) = 0 , or U ( t )  = u , limits the goodness of f i t

since it forces the function to pass through the indicated point. Better

overall fits could obtain by not requiring u(0) to equal zero——for example,

by using cx + d instead of cx for  the linear f i t s——but  the u(0)  0 constraint

for all functions above and below target ensures the continuity of each two—

piece utility function at the target. Continuity at t could also be ensured

without forcing u(0) to equal zero, but best two—piece fits could only be

obtained in this way by performing a simultaneous below—above fit. Since such

a procedure would have been much more involved than the separated procedure it

was not pursued .

The best c values for the linear cases were obtained by the usual dif-

ferentiation method . The extreme transformed data—point value (10,10) was

chosen to accommodate numerical computations for the nonlinear fits. We

tried (1,1) and (100,100) also as extreme points and found these less well

suited to the computer ’s processes . A standard Newton—Raphson technique was

used in the nonlinear cases to estimate the values of the parameters that

minimize the error sum of squares for the function being fit to the data.

The Newton—Raphson minimizing procedure , which relies on the sum—of—squares

function f being convex in the parameters, requires the selection of starting

L - _ _ _  ______________________________
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values for a and a or b and b . It then computes the gradient Vf and
1 2 1 2

—1
4 Hession inverse H , iterating on the parameter vector p by p =

p
1 

— aVf(p i)C
1 (p 1) with 0<  a <  1 until a near—zero gradient is reached .

Convergence rates for the Newton—Raphson procedure were sensitive to

the starting values, which were chosen by visual examination of the data

and selected trial computations , and to the value of the convergence factor a.

Convergence was often facilitated by starting with a small (about.l) and

increasing it towards 1.0 as the zero—gradient point was approached .

DATA ANALYSIS

The data involve 30 empi r ically— assessed u t i l i t y  functions from five

sources . Each source is listed as follows along with the number of cases

and the designation of these cases on Table 1.

Swalm [ 2 4 ] :  13 cases. Case SXk is for  man k in group X.

Halter and Dean [12]: two cases, p. 64, for a grain farmer

(HDGF) and a college professor (HDCP) .

Grayson [ 9 1: 10 cases. Case GkAB is for  .~ idi vidsia1 A . B .  on

page 30k; case Cxy is the case on page 3xy.

Green [10]: three cases. Case PGAB is for individual A.B.

Barnes and Reinmuth [ 2 ) :  two cases , for contractors A (BRA) and

B(BRB).

L. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -~~~~~~~~



12

Green ’s functions are based on percent return on investment; all others are

based on dollar increments. We omitted one of Green ’s functions because of

slightly ambiguous data, and omitted the Halter—Dean orchard farmer ’s function

which appeared to be exactly linear below the target (t = 0) and above the

target with R(t) 4. All utility assessments included changes that involved

many thousands of dollars.

The 30 cases are listed in Tables IA and lB. For each case we identify

Tables 1A and lB about here

the target point, which was chosen by visual examination, and note how many

data points c ther than the origin were used for the below—target fits and for

the above—target fits. In all except Green ’s cases the data points were read

from the plots as well as this could be done. Since Green presented only

smooth functions without also showing his assessed data points , the data for

his cases were taken directly from his curves at equally—spaced intervals of

percent return.

All below—target and above—target cases had two or more data points other

than the origin except for below—target cases G4FH and G8CS. No P and E fits

were made for the latter two cases for obvious reasons. The above—target fits

for these two situations had different curvatures: G4FH was convex and G8CS

was concave.

Curvature

ft follows that 28 of the 30 cases yield a composite below—target——

above—target picture for the curvatures of the P and E fits. Fortunately, it

is unnecessary to separate P from E for present purooses since in each of the
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TABLE lA

Swalm (S) and Halter—Dean (HD) Cases

Below Target Above Target Slope Ratio
No. of % of No. of % of R(t)
Data L MMSE: Data L+ Mu SE: 

—
Case Target Shape Points P E Points P4 E+ CL4 E E+

SAl 0 1 6 49.5 74.3 8 4.55 6.67 14.8 9.3

SA6 0 1 4 91.2 93.1 7 80.5 91.7 2.1 2.2

SA27 0 1 6 88.1 97.2 7 9.65 14.1 1.8 1.1

SA34 0 4 3 32.8 18.9 8 71.7 62.6 3.6 6.9

SA1O 0 3 5 87.1 83.5 6 4.95 6.90 1.7 .9

SM 0 4 2 44.3  44.3 7 24.1 26.2  .8 ~

SB3 0 1 6 90.0 94.9 8 11.6 4.36 4.5 2.0

SB13 0 1 6 48.5 65.1 7 26.1 42.7 2.6 5.2

SB31 0 1 5 86.9 96.2 7 11.9 15.5 2.6 .8

SC18 • 0 1 5 13.0 1.30 8 13.8 10.9 3.4 1.7

SC22 0 1 6 66.2 79.9  8 8.80 13.7 7 . 7  11.0

SC24 0 1 4 11.2 .06 7 7.89 16.8 4.4  2 .5

SCI9 0 1 6 36.1 42.2 8 9.13 29.2 2.2 6.6

HDGF 0 1 4 6.12 1.94 4 11.3 1.88 5.0 5.5

HDCP 0 1 4 3.39 2.26 6 74.9 92.8 3.6 17.3



14

TABLE lB

Grayson (G), Green (PC) and Barnes—Reinmuth (BR) Cases

Below Target Above Target Slope Ratio

No. of % of No. of % of R(t)
Data L MMSE: Data L+ ~Q~SE: — -Case Target Shape Points P E Points P4 E4 L L+ E E

4

G4JB 0 4 3 97.0 88.9 12 64.5 59.0 3.1 4.6

G4BB -50 3 2 0 0 14 17.2 12.1 19.9 1.6

G4FH —150 1 — — 9 51.0 61.5 7.8 —

G6MR 0 3 3 3.92 2.01 9 99.3 96.6 19.8 .9

G8RR 0 2 3 18.1 31.9 5 4.17 15.2 5.5 6.5

G8JG 0 2 5 3.68 6.61 5 28.3 26. 3  23.3 33000 .

GSCS —80 1 — — 9 99.7 99.9 165.2 —

GlO 0 2 4 .92 .12 8 80.5 78.2 4.8 2 .2

Gl2 0 2 5 .46 .06 3 19.8 10.3 7.5 4 .8

G13 —100 1 2 0 0 10 49.5  46.5 4 .9  6.0

PGRN 20% 2 3 .02 1.88 4 35.7 16.3 5.2 1.7

PGWS 20% 2 3 8.13 3.45 4 30.4 12.7 2.9 .5

PGJB 20% 2 3 7.38 1.59 3 25.2 11.9 7.1 3.9

BRA 0 4 3 16.7 2.08 8 4.50 10.4 7 .7  91.9

BRB 0 4 3 .08 8.05 6 78.5 71.1 24.7  81.7

Means 32.5 33.6 35.3 35.5

Medians 14.8 7.3 24.7 16.5

Better of P and B: Means 29.6 29.0

Medians 3.6 12.4



15

56 cases (28 below, 28 above) the P and E curvatures were identical in sign.

The composite curvatures for the 28 cases are shown in the “Shape” column in

Table 1, where 1 (convex below, concave above), 2 (concave below , convex

above), 3 = (concave below and above) and 4 (convex below and above). The

summaries for these four types are as follows:

concave convex
above above

convex below 13 5 18

concave below 3 7 10

16 12 28

This shows that the predominant composite is convex—concave (cf. Figure 1),

followed by concave—convex . These two composite types cover more than 70

percent of the 28 cases, thus lending substantial support to the Kahneman—

Tversky reflection effect [16], which in one form suggests that above—target

risk aversion iS often accompanied by below—target risk seeking, and that

above—target risk seeking is often accompanied by below—target risk aversion.

It is also interesting to note that risk aversion both above and below

the target was observed in only three of the 28 cases. This of course

suggests the general untenability of the frequently—invoked assumption that

individuals are everywhere risk averse.

In Table 2 we have separated the below—target cases from the above—target

cases. Bypassing for the moment the question of whether P or E tends to give

Tabl e 2 about here
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TABLE 2

Curvature of Utility Functions and Best Fits

Below Target Above Target

P E P & E  P E

best best tied* best best

Convex 9 7 2 18 4 9 13

Concave 3 6 1 10 11 6 17

12 13 3 28 15 15 30

*Each of these three cases had two data points. One convexcase (Gl3) and the concave case (G4BB) were monotonic, givingexact fits for P and E. The other convex case (SA4) was non—monotonic and gave the same limiting fit for P and E. The twobelow—target cases that had only one data point (G4FH and G8CS)are omitted from this table.
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better fits, it will be noted that about 64 percent of the 28 below—target

curves are convex and that about 57 percent of the 30 above—target curves

are concave. Hence the majority trend below target is towards risk seeking,

while the majority trend above target is towards risk aversion. It is also

interesting to observe that below—target risk seeking is slightly more

prevalent than above—target risk aversion although the figures are close

enough to cast doubt on the generalizability of this observation.

Our final look at curvature ~~~ se is provided by Figure 2, which plots

the (a ,a )  pairs for the MMS E P fits for below—target cases (upper left)

and above—target cases (upper right) along with the (b ,b ) pairs for the
1 2

~~SE E fits for below—target cases (lower left) and above—target cases (lower

right). In viewing this figure it should be recalled that the maximum data

Figure 2 about here

point for each above—target f i t  was transformed linearly into (10,10) , and

the minimum data point for each below—target fit was transformed linearly

(with “reflection”) into (10,10) also. The sets of parameter—pair points in

Figure 2 do not lie along smooth curves (but come close) because the best fits

did not necessarily pass through a common point (e.g. (lO ,lO))other than the

origin.

Our primary interest its Figure 2 is the distributions of the curvature

parameters , i.e. of a for P and b for B. Consider the power functions first.
2 2

In the below—targe t P cases, seven of the a values exceeded 2. seven were
2

less than 1/2, and the remaining 14 fell between 1/2 and 2. In other words,

only 50 percent of the below—target cases had a values between the square—root

—4
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FIGURE 2
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value of 1/2 and the square value 2. On the other hand, 80 percent of the a
2

values in the above—target cases fell between 1/2 and 2; the other 20 percent

were split between > 2 and < 1/2. The obvious implication of these

observations is that the below—target functions tend to exhibit more curvature

than the above—target functions. Put another way, the above—target functions

tend to be closer to linear functions than the below—target functions.

A similar pattern is observed for the exponential fits in the lower half

of Figure 2, where larger lb values indicate more curvature. For example,
2

50 percent of the b values for below—target E fits fell between —1/4 and

+1/4 , whereas 70 percent of the b values for above—target E fits were between
2

-1/4 and +1/4.

Changes in Slope

To examine the extent to which below—target utility increases more rapidly

than above—target utility we computed the slope ratio R(t) of below—target

slope to above—target slope for the two—piece linear fit L L
+ 

and the two—piece

exponential fit CE
4
. This was done for each of the 30 cases in Table 1 with

the exception of E E
4 

for cases G4FH and G8CS since below—target exponentials

were not fit for these cases. The computations for R(t), whose results appear

in the final two columns of Table 1, followed the procedure described earlier.

These computations strongly support the proposition that the utility

function is steeper below the target than above the target .  Cases to the

contrary arose only once (SA4) in the 30 L L
4 

cases and were observed four

times (SA1O , SB31, G6MR , PGWS) in the 28 applicable E
_
E
+ 

cases. However , the

larger value of R(t) exceeded unity in every instance. The median values of

R(t) were about 4.9 for the two—piece linear fits and about 4.7 for the two—piece

exponential fits.
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Figure 3 displays the (R(t) for L L
4
, R(t) for E

_
E
+
) pairs for the 28

applicable cases on Table 1. The absence of correlation between the two

methods used to compute R(t) is shown by the fact that the Pearson product—

Figure 3 about here

moment correlation coefficient r is virtually zero for the 24 data points

shown in the body of Figure 3. Although this finding was not fully

anticipated , it does not seem unreasonable in view of the differences between

L and E in the neighborhood of the target . If anything , the lack of correlation

strengthens the steepness proposition since this proposition was found to hold

for both methods. In other words, the assertion that below—target utility

increases more rapidly than above—target utility is robust against two very

different methods of computing this factor .

Goodness of Fits

We shall conclude our analysis with comparisons of P versus E and a

discussion of the degree to which these functions give good fits to the data.

The P versus E comparison will be considered first.

The bottom row of Table 2 shows that P and E were respectively best in

12 and 13 below—target cases and in 15 and 15 above—target cases. Therefore,

neither P nor E significantly outperformed the other in either the below—

target realm or the above—target realm. However , Table 2 does reveal one

substantial difference between the two functions. To see this , we shall say

that a function is flat if it is a convex below—target function or a concave

above—target function (these functions flatten out as we move away from t)

and that a function is steep if it is a concave below—target function or a

L
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FIGURE 3
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convex above—target function (these functions rise or drop rapidly as we move

away from t ) .  Table 2 then yields the following summary picture:

P best E best

flat functions 20 13 33

steep functions 7 15 22

27 28 55

Hence P gave a better fit than E in about 61 percent of the 33 f la t  cases ,

and E gave a bet ter  fit than P in about 68 percent of the 22 steep cases.

Both figures are rather significant and permit the conclusion——in the context

of the presen t data——that  power functions tend to give better fits to flat

data, whereas exponential functions tend to give better fits to steep data.

The MMSEs of the P and E fits are illustrated in two ways. Table 1

gives these values as percentages of the MMSEs for the linear fits in each

case, and Figure 4 shows the (~~SE P , MNSE E) pair for each below—target

case and each above—target case. Consider first the percentage data of Table

1. As shown at the bottom of the table, the means for the four columns (P and

E, below and above) lie between 32 and 36 percent , but the median percentages

are considerably smaller, varying from a low median of 7.3 percent for below—

target E fits to a high of 24.7 percent for above—target P fits. There are

seven below—target cases in which the smaller of the P and B MMSEs exceeds

50 percent of the linear MNSE, and nine above—target cases in which the smaller

of the P and E MuISEs exceeds 50 percent of the linear MMSE. In most of these

cases the fit P and B functions were close to linear (e.g. a between .80 and

1.3 in 13 of these 16 poor—fit cases) which , along with an examination of the

—-4
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data, suggests that significantly better  f i t s  would not be obtained with

other simple functions.

The most encouraging percent—of—linear MMSE figures are shown in the

last two lines of Table 1, where the larger means than medians reflect the

high—percentage cases just  noted and the preponderance of low—percentage

cases. The median figures in the last line of the table show that in half

of the below—target cases more than 96 percent of the linear MMSE was

eliminated by the better of the P and E fits, and in half of the above—

target cases more than 87 percent of the linear MMSE was eliminated by the

better nonlinear fit.

Our final concern will be with the actual NMSE figures, which are shown

on Figure 4 for the P and E fits. In viewing these figures it should be

kept in mind that all fits were made to (x,y) pairs that ranged from (0,0)

to (10,10). Hence an MMSE value of say .25 indicates that the average square

of the distance between the fit function and the data point irs the vertical

direction for the case at hand is .25, which corresponds to an absolute

vertical distance of .5 in a total range of 10.

Figure 4 about here

Figure 4 shows that the medians of the MMSE values for the P fits and

for the E fits were both about .21. The corresponding med ian for the L fits

was about 1.86. As might be expected from preceding discussion , the

arithmetic means were somewhat larger than these medians. Because there are

several ways of computing the means , we chose a conservative method in which

the total  sum of squares for all n cases is divided by the difference between



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

24

FIGURE 4
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the total number of data points for the n cases and kn, where k is the number

of parameters in the fitting function: k = 1 for L, k = 2 for P and E. The

reason for subtracting kn from the number of data points is that a function

with k parameters can always be fit exactly through k points, provided of

course that conditions such as moziotonicity for the P and B functions hold

for the data. The nonmonotonic two—point below—target case SA4 was excluded

from these computations , but all other applicable cases were included .

We shall refer to the mean values obtained by this procedure as the

adjusted MSE averages. The below—target and above—target adjusted MSE averages

along with the combined or pooled averages are shown in Table 3. The difference

Table 3 about here

between the averages for the below—target and above—target cases is apparently

caused by the more erratic nature of the below—target data. Although we suspect

that individuals find it more difficult to provide reliable utility assessments

in the loss region than in the gain region, a host of other factors could

affect this observed difference [9] [15] [17].

Be’~ause Table 3 is based on means instead of medians and on conservative

means at that, its goodness—of—fit picture is not as rosy as that given

earlier. Nevertheless, it does show that both the P and B fits are substantially

better than the linear fits. When this way of viewing the data is combined with

our preceding analysis, our own general impression is that the power and

exponential functions provide fairly good fits to the assessment data .
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TABLE 3

Adjusted MSE Averages

Below Target Above Target Pooled

Linear Fits 4.79 2.29 3.06

Power Fits 2.24 .66 1.08

Exponentials 2.78 .68 1.24

I Best of P and E 2.17 .59 1.01

L - ‘ - -  -—______________________________________
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SUNMARY

Data from five sources for thirty empirically—assessed utility functions

defined on changes in wealth or percent return on investment were analyzed

for general trends and for  their susceptability to representation by simple

functional forms. Each of the thirty data sets was divided into below—target

data and above—target data, and the functions were fit separately to each

subset. In most cases the target was at the zero—gain point.

About two—thirds of the below—target functions were convex or risk—seeking ,

and slightly less than three—fifths of the above—target functions were concave

or risk—averse . The predominant composite shape was convex below and concave

above (46 percent). Of the other three composite types the concave—concave

was observed least often (11 percent).

In essentially all cases, below—target utility was steeper than above—

target utility . The median values of below—target slope divided by above—

target slope as determined by two relatively uncorrelated methods were between

4 and 5.

Linear , power and exponential functions were fit to each data subset

under the minimum—least—squares criterion . The power and exponential functions

gave significantly better fits than the linear function even when the data

were adjusted to account for the additional parameter in the nonlinear

functions. Without this adjustment, the median minimum MSEs of the linear ,

power and exponential fits over all cases were respectively about 1.9, 0.2 and

0.2 for data sets whose minimum and maximum points were at (0,0) and (10,10) .

Power functions gave better fits than exponential functions in about three—

fifths of the flat data sets (convex below or concave above), whereas

exponential functions gave better fits than power functions in about two—

thirds of the steep data sets (concave below or convex above).
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